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General plasma description

Electro-Magnetic fields Charged particles

Currents

Lorentz force

Particle models: hot, warm, cold plasma

1 Derivation of the cold plasma model

We derive here the single species cold plasma model for a homogeneous magnetized plasma, always
considering that the frequency ω is a parameter.

1.1 Our hypotheses

• fluid model for the particles

• cold plasma: no thermal velocity, no pressure

• single species: electrons, velocity of ions is neglected

• uniform plasma: density n0

• magnetized plasma: constant magnetic field B0

• different time scales: linearize around an equilibrium

• high frequency, Fourier in time: frequency ω

We think of B0 and n0 as data, and of ω as a parameter

1.2 The PDE model

Notation: x space variable, t time, e > 0 charge of an electron, me mass of an electron, ε0 vacuum
permittivity, µ0 vacuum permeability, c2 = 1/(ε0µ0) speed of light in vacuum

∇×E = −∂tB
∇×B = µ0 (J + ε0∂tE)

me (∂tv + v · ∇v) = −e (E + v ×B)
J = −en0v

(1)

Ansatz
Q(x, t)← Q0(x) + Q(x) exp(−ıωt)

where Q0 is the equilibrium quantity, that is to say it is independent of t
Equilibrium E0 = 0, v0 = 0, B0 6= 0 and constant since we consider a uniform plasma
Maxwell Eliminate B

∇×∇×E = ıωµ0J +
ω2

c2
E
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Euler Linearize
−ıωmev = −eE− ev ×B0

Write B0 = B0b [
−ıωI +

eB0

me
b×
]

v =
−e
me

E (2)

Definition 1. The cyclotron frequency is defined as

ωc =
eB0

me
.

Remark 1. v and E are vector fields in the physical 3D space. The relation between v and E is
linear, not only as a vector field but in a stronger sense as appears in (2): point-wise, that is to say
that at any given point in space the relation between the velocity and electric field, as vectors in
C3, is linear.

The data B0 introduces anisotropy in the model, therefore it is natural to choose an orthonormal
basis of the physical space related to B0, rather than any orthonormal basis. Let’s consider a basis
whose z-axis is parallel to b, so that (2) gives

v =
−ıe
me


ω

ω2−ω2
c

−ıωc
ω2−ω2

c
0

ıωc
ω2−ω2

c

ω
ω2−ω2

c
0

0 0 1
ω


︸ ︷︷ ︸

:=S

E (3)

Back to Maxwell (point-wise) linear constitutive relation J as a function of E:

J = ı
e2n0
me

SE

Eliminating the current field leads to the following second order PDE for the eletric field:

∇×∇×E− ω2

c2
E +

ω

c2
e2n0
meε0

SE = 0

Definition 2. The plasma frequency ωp > 0 is defined as

ω2
p =

e2n0
meε0

.

Definition 3. The dielectric tensor K is defined as

K := I−
ω2
p

ω2
S.

Defining

S = 1−
ω2
p

ω

(
ω

ω2 − ω2
c

)
D = −

ω2
p

ω

(
ωc

ω2 − ω2
c

)
P = 1−

ω2
p

ω2

we have

K =

 S −ıD 0
ıD S 0
0 0 P


4



Remark 2. K is hermitian. The eigenvalues of K are P , S +D and S −D.

Definition 4.
R := S +D

L := S −D

So

R = 1−
ω2
p

ω2 − ω2
c

(
1 +

ωc
ω

)
= 1−

ω2
p

ω(ω − ωc)
,

L = 1−
ω2
p

ω2 − ω2
c

(
1− ωc

ω

)
= 1−

ω2
p

ω(ω + ωc)
,

and the sign of each eigenvalue clearly depends on the parameter ω.
The model for the unknown E:

∇×∇×E− ω2

c2
KE = 0 (4)

Remark 3. We will keep in mind that ω2
p ≈ n0 while ωc ≈ B0, and that ω is a parameter: K depends

on ω.

Remark 4. Because of the anisotropy in K, the magnetic field E is expected to have different
properties in different directions. In our model the anisotropy is due to the presence of an equilibrium
magnetic field B0, so we will distinguish the parallel and perpendicular directions with respect to
B0.

Remark 5. S and K are 3× 3 matrices, I is the 3× 3 identity matrix

Remark 6. Even though we did not use it here, we also have

∇ ·E = 4πρ (5a)

∇ ·B = 0 (5b)

where ρ is the charge density

2 Dispersion relation

Looking for plane wave solutions to the PDE: E = A exp ık · x

• corresponds to Fourier transform in space

• such solutions, if they propagate, are called propagation modes

• we will give the definition of cut-off and resonance

• here we choose to look for k as a function of the parameter ω, while ωc and ωp are data
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2.1 A matrix kernel problem

From the PDE

−k× k×A− ω2

c2
KA = 0

Rescaling n = c
ωk

[n× n×+K]A = 0 (6)

Remark 7. So far the z-axis of our basis of the physical space has been fixed, parallel to B0, so
the x- and y- axes could be anything. To simplify the expression of the matrix in square brackets,
which depends on n, we will now specify the components that are perpendicular to B0: we consider
the x-axis so that n lies in the (x, z) plane.

Definition 5. Let θ be, in the (x, z) plane, the angle between B0 and n, also called the incident
angle of the wave. The parallel and perpendicular components, with respect to B0, of n are denoted

n‖ = nz = n cos θ

n⊥ = nx = n sin θ

Remark 8. It is crucial to see that n(or k) ∈ R3 corresponds to wave propagation, while
n(or k) ∈ C\R3 corresponds to evanescent waves: indeed if n has a non-zero imaginary part,
there is a real exponent in the exponential term of the propagation mode, which gives either an
exponentially increasing solution, discarded for not being physical, or an exponentially decreasing
solution, also called evanescent wave. Therefore, in what follows,

• n2 > 0 corresponds to wave propagation,

• n2 < 0 corresponds to evanescent waves.

Definition 6. Define the matrix M by

M(n2, θ) =

S − n2 cos2 θ −ıD n2 cos θ sin θ
ıD S − n2 0

n2 cos θ sin θ 0 P − n2 sin2 θ


Non trivial solutions of (6) exist if and only if detM(n2, θ) = 0, and the corresponding eigen-

vectors are the propagation modes.

Definition 7. If (n2∗, θ∗) is such that detM(n2∗, θ∗) = 0 and if A∗ is a null vector of M(n2∗, θ∗),
then E∗ = A∗ exp ın∗(sin θ∗x+ cos θ∗z) is called a propagation mode.

Remark 9. Since a propagation mode propagates if and only if n2∗ > 0, see Remark 8, a cut-off
frequency is a transition frequency between propagating frequencies and evanescent frequencies.

Remark 10. The definitions of n∗, θ∗, A∗, and therefore of a propagation mode depend on the
parameter ω - as well as the values of B0 and n0.

Definition 8. For a given propagation mode, a cut-off frequency ω∗ is defined implicitly by the
condition n∗(ω∗) = 0 while a resonance frequency ω∗ is defined implicitly by the condition n∗(ω∗) =

∞. Moreover, since ω2
p = e2n0

meε0
, the cut-off density corresponding to a frequency ω is defined by

n0,CO(ω) := meε0ω
e2

.
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Remark 11. For any value of θ, M(0, θ) = K. Therefore a cut-off frequency is equivalently defined
implicitly as a frequency ω∗ such that an eigenvalue of K(ω∗) vanishes. It is independent of θ.

Remark 12. For various applications, different definitions of a cut-off can be used, such as the two
following ones:

• for a given (n∗)⊥, a cut-off frequency is defined implicitly by the condition (n∗)‖(ω∗) = 0,

• for a given (n∗)‖, a cut-off frequency is defined implicitly by the condition (n∗)⊥(ω∗) = 0.

Plan For specific and general values of θ, we will now follow the following steps:

1. find the n2 as a function of ω

2. find a corresponding polarization A

3. identify cut-offs and resonances of the corresponding propagation mode

4. represent n2 as a function of ω

We will use sub-indices for n referring to names of the different propagation mode, following the
literature.

2.2 Parallel propagation

The case θ = 0 (or equivalently θ = π), which means that n ‖ B0, is referred to as parallel
propagation. Since

M(n2, θ = 0) =

S − n2 −ıD 0
ıD S − n2 0
0 0 P


we have detM(n2, θ = 0) = P ((S − n2)2 −D2), so that

detM(n2, θ = 0) = 0⇔ n2 = S ±D = R or L. (7)

There are therefore two possibilities for n2.

2.2.1 The right-handed wave

The first possibility corresponds to the plus sign in (7).

1. n2R := R = S +D

⇒ n2R = 1−
ω2
p

ω(ω − ωc)

2. M(n2R, θ = 0) =

−D −ıD 0
ıD −D 0
0 0 P

⇒M(n2R, θ = 0) ·

−ı1
0

 =

0
0
0



⇒ AR :=

−ı1
0


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ω

n2R(ω)
ωc

ωc/2

1 + 4ω2
p/ω

2
c

1

ωR

Figure 1: R-mode dispersion relation

3. Resonances There is a non-trivial resonance for ω = ωc, called the electron cyclotron resonance,
and a trivial one for ω = 0

Cut-off n2R = 0 ⇔ ω2 − ωcω − ω2
p = 0 ⇔ ω = ωc

2 ±
√(

ωc
2

)2
+ ω2

p so there is a single (> 0)
cut-off frequency defined by

ωR :=
ωc
2

+

√(ωc
2

)2
+ ω2

p

Note that ωR > ωc as long as ω2
p > 0.

4. n2R(ω) has a local minimum for ω = ωc, three asymptots, and is negative if and only if ω is
between the resonance frequency ωc and the cut-off frequency ωR. See Figure 1.

So with nR :=
√

1− ω2
p

ω(ω−ωc)
, the vector field ER := AR exp ıωc nRz is a solution to the PDE (4),

referred to as the right-handed (or R) propagation mode. The R-mode does not propagate for
ω ∈ [ωc, ωR]. Since AR ⊥ B0, the R-mode solution has perpendicular polarization.

2.2.2 The left-handed wave

The second possibility corresponds to the minus sign in (7).

1. n2L := L = S −D

⇒ n2L = 1−
ω2
p

ω(ω + ωc)
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ω

n2L(ω)

1

ωL

Figure 2: L-mode dispersion relation

2. M(n2L, θ = 0) =

D −ıD 0
ıD D 0
0 0 P

⇒M(n2L, θ = 0) ·

ı1
0

 =

0
0
0



⇒ AL :=

ı1
0


3. Resonances There is only a trivial one for ω = 0

Cut-off n2L = 0 ⇔ ω2 + ωcω − ω2
p = 0 ⇔ ω = −ωc

2 ±
√(

ωc
2

)2
+ ω2

p so there is a single (> 0)
cut-off frequency defined by

ωL := −ωc
2

+

√(ωc
2

)2
+ ω2

p

4. n2L(ω) is increasing and is negative if and only if ω is below the cut-off frequency ωL. See
Figure 2.

So with nL :=
√

1− ω2
p

ω(ω+ωc)
, the vector field EL := AL exp ıωc nLz is a solution to the PDE (4),

referred to as the left-handed (or L) propagation mode. The L-mode does not propagate for ω ≤ ωL.
Since AL ⊥ B0, the L-mode solution has perpendicular polarization.
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2.3 Perpendicular propagation

The case θ = π/2 (or equivalently θ = −π/2), which means that n ⊥ B0, is referred to as perpen-
dicular propagation. Since

M(n2, θ = π/2) =

 S −ıD 0
ıD S − n2 0
0 0 P − n2


we have detM(n2, θ = π/2) = (P − n2)((S − n2)S −D2), so that

detM(n2, θ = π/2) = 0⇔ n2 = P or (S2 −D2)/S. (8)

There are therefore two possibilities for n2.

2.3.1 The ordinary wave

The first possibility corresponds to the first option in (8).

1. n2O := P

⇒ n2O = 1−
ω2
p

ω2

2. M(n2O, θ = π/2) =

 S −ıD 0
ıD S − P 0
0 0 0



⇒ AO =

0
0
1


3. Resonance There is only a trivial one for ω = 0

Cut-off n2O = 0⇔ ω2 = ω2
P

4. n2O(ω) is increasing and is negative if and only if ω is below the cut-off frequency ωp. See
Figure 3.

So with nO :=

√
1− ω2

p

ω2 , the vector field EO := AO exp ıωc nOx is a solution to the PDE (4), referred
to as the ordinary (or O) propagation mode. The O-mode does not propagate for ω ≤ ωp. Since
AO ‖ B0, the O-mode solution has parallel polarization.

2.3.2 The extra-ordinary wave

The second possibility corresponds to the second option in (8).

1. n2X := S2−D2

S = RL
S

⇒ n2X =
[ω(ω − ωc)− ω2

p][ω(ω + ωc)− ω2
p]

ω2(ω2 − ω2
c − ω2

p)
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ω

n2O(ω)

1

ωp

Figure 3: O-mode dispersion relation

2. M(n2X , θ = π/2) =

 S −ıD 0

ıD D2

S 0

0 0 P − RL
S

⇒M(n2L, θ = 0) ·

 1

−ı SD
0

 =

0
0
0



⇒ AX =

 D
−ıS

0


3. Resonance There is a resonance defined by S = 0⇔ ω2 − ω2

c − ω2
p = 0 so there is a resonance

frequency ωUH > 0 defined by
ω2
UH = ω2

c + ω2
p

and a trivial one for ω = 0.

Cut-offs n2X = 0⇔ RL = 0 so from 3 in 2.2.1 and 3 in 2.2.2 there are two cut-off frequencies,
ωR and ωL.

4. Since
ω2
R − ω2

UH

2
=
ωc
2

(√(ωc
2

)2
+ ω2

p −
ωc
2

)
> 0

and
ω2
UH − ω2

L

2
=
ωc
2

(
ωc
2

+

√(ωc
2

)2
+ ω2

p

)
> 0,

it yields ωL < ωUH < ωR. Since we can write

n2X(ω) =
ω2(1− ω2

p/ω
2)− ω2

c

ω2 − ω2
c − ω2

p

,

11



ω

n2X(ω)

1

ωUH

ωL ωR

Figure 4: X-mode dispersion relation

let’s denote by D the denominator, one can verify that

(n2X)′(ω) · D2 = 2
ω2
p

ω2
·
ω4 − 2ω2

pω
2 + ω2

p(ω
2
p + ω2

c )

ω
> 0,

which implies that n2X(ω) is increasing. this function is negative if and only if ω is below ωL
or between ωUH and ωR. See Figure 4.

So with nX :=

√
[ω(ω−ωc)−ω2

p][ω(ω+ωc)−ω2
p]

ω2(ω2−ω2
c−ω2

p)
, the vector field EX := AX exp ıωc nXx is a solution to

the PDE (4), referred to as the extra-ordinary (or X) propagation mode. The X-mode does not
propagate for ω ≤ ωL as well as for ω ∈ [ωUH , ωR]. Since AX ⊥ B0, the O-mode solution has
perpendicular polarization.

2.4 Remarks on the case of general incidence angle

I the case of a general incidence angle θ, there are no such simple computation, but the following
notation is used:

A = P cos2 θ + S sin2 θ

B = RL sin2 θ + PS(1 + cos2 θ)

C = PRL

so that detM(n2, θ) = An4 −Bn2 + C. The dispersion relation detM(n2, θ) = 0 is also written

tan2 θ =
P (n2 −R)(n2 − L)

(Sn2 −RL)(n2 − P )
,
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formula from which it is easy to retrieve the four cases studied in 2.2.1, 2.2.2, 2.3.1 and 2.3.2.
Cut-offs The general condition for a cut-off is PRL = 0, so in the general case the cut-off

frequencies are ωp, ωL and ωR.

3 Weakly inhomogeneous plasma

We consider now smooth and slow variations of the data B0(x), n0(x), and in turn the frequencies
ωc, ωp, ωR, ωL, ωUH all depend on x. Contrarily to the point of view chosen in the previous section,
here the frequency ω is considered as data, while the parameter is the space variable x. In certain
cases the frequency ω is related to the antenna sending the wave from the chamber wall towards
the plasma.

As B0 and n0 depend on the space variable, the results obtained from taking the Fourier trans-
form in space are not valid here. However, under the assumption of weak inhomogeneity, these
results are used as a low order approximation.

Remark 13. Our goal here is not to give a mathematical justification for using results from the
dispersion relation with variable coefficients, but rather to present some of the ideas appearing in
the literature. So we will here apply the results of the previous section to the case of variable

coefficients. The idea is rather to illustrate the crucial impact of the frequency of a wave,
for a given propagation mode, on the sets in physical space where it can or cannot propagate. This
is very related to the notion of accessibility, and mode conversion.

Remark 14. It won’t be emphasized here, but of course the equilibrium data,B0 and n0, also play
an important role on wave propagation.

We will focus here on the representation of perpendicular propagation proposed in the presenta-
tion of Emanuele Poli: the question here is, for a given geometry, that is to say for given profiles of
B0(x) and n0(x), identify subdomains of the plasma where waves can propagate. This is referred to
as the question of accessibility in the literature. Having in mind a simplified geometry for poloidal
plane in a tokamak, we will consider in a 2D space a circular plasma in the (x, y)-plane and a
magnetic field B0 in the z-direction, with n0(x, y) = nmax− ((x− x0)2 + y2) and of B0(x, y) = 1/x,
as represented in Figure 5.

In this 2D setting, cut-offs and resonances are now curves defined implicitly as level sets of a
given function: {(x, y) ∈ R2/ω∗(x, y) = ω}. Note that in a 3D setting they would be surfaces.

3.1 The O-mode wave

The 0-mode cut-off is defined by {(x, y) ∈ R2/ωp(x, y) = ω}, which depends on n0 and not on B0.
Let (ωp)max denote the maximum value of ωp(x) in the plasma. There are two possible situations:

• if the parameter ω is above (ωp)max, then n2O(x, y) > 0 in the whole domain so the O-mode
wave can propagate in the whole domain,

• if the parameter ω is below (ωp)max, then the cut-off curve is the curve implicitly defined by
{(x, y) ∈ R2/ωp(x, y) = ω}, and the O-mode wave can propagate on the side of the curve
where ω > ωp(x, y), where n2O(x, y) > 0, and can not propagate on the side of the curve where
ω < ωp(x, y).

Here since ωp(x, y) depends only on the distance between the center of the circular plasma and the
point (x, y), the cut-off curve, when it exists, is a circle independently of the value of ω. However

13



x

y

x0

Plasma core

Vacuum

x

y

x0

HFS LFS

Figure 5: Level sets of n0(x, y) = nmax − ((x− x0)2 + y2) and of B0(x, y) = 1/x, indicating the
vacuum outside the plasma, the plasma core, the high field side (HFS) and low field side (LFS).

its radius depends on the value ω. Indeed if C := e2/(meε0) then

ωp(x, y) = ω ⇔ (x− x0)2 + y2 = nmax −
ω

C

See illustration on Figure 6.

3.2 The X-mode wave

For the X-mode wave, the resonance curve is defined by defined by {(x, y) ∈ R2/ωUH(x, y) = ω}
and the cut-off curves are defined by {(x, y) ∈ R2/ωR(x, y) = ω} and {(x, y) ∈ R2/ωL(x, y) = ω}.
Let (ωR)max and (ωL)max denote the maximum values of ωR(x) and ωL(x) in the plasma. Here
there are several possible situations, depending on the values of the parameter ω, but the situation
is much more involved than for the O-mode wave. Here are some comments:

• if the parameter ω is above (ωR)max, then there are no cut-offs or resonances in the plasma,
n2X(x, y) > 0 in the whole domain so the X-mode wave can propagate in the whole domain,

• if the parameter ω is above (ωL)max, then there is no L cut-off in the plasma,

• if the parameter ω is below (ωL)max, then the X-mode wave can not propagate on the side of
the curve where ω < ωL(x, y), where n2X(x, y) < 0,

• at any point (x, y) such that the parameter ω is between ωUH(x, y) and ωR(x, y), the wave
cannot propagate.

The situation the most commonly represented in the literature, including the two cut-offs and the
resonance, is displayed here on Figure 7.
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x

y

x0

Cut-off curve

Figure 6: Example of a non-empty cut-off curve for the O-mode wave, that is to say for a frequency
ω such that ω < ωp(x0, 0) = (ωp)max.

x

y

{(x, y)/ωUH(x, y) = ω}

{(x, y)/ωR(x, y) = ω}

{(x, y)/ωL(x, y) = ω}

Figure 7: Example of cut-off (dotted lines) and resonance (dashed line) curves for the X-mode. The
boundary of the plasma is represented in light red. The X-mode wave
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Figure 8: Level sets of the profiles of the plasma and cyclotron frequencies. Left: ωp(x, y) defined
in Equation (9). Right: ωc(x, y) defined in Equation (10).

In order to illustrate the variety of possible situations for the X-mode wave, let’s consider the
profiles of ωp(x) and ωc(x):

ωp(x) =
√

9− (x− 3.5)2 − y2. (9)

ωc(x) =
1

0.01
√
x
, (10)

There level sets are represented on Figure 8. Figure 9 displays the level sets of the corresponding cut-
off and resonance frequencies ωR(x, y), ωL(x, y), ωUH(x, y), using the same scale and highlighting
simultaneously for these three functions the sets of level 1, 2.25, 3.45, and 4. The level sets of
ωL(x, y) are closed or empty, while the level sets of and ωR(x, y) and ωUH(x, y) can be empty but
are not necessarily closed, or connected.

Finally, Figure 10 gathers, on single graphs representing the plasma, the non-empty level sets
of a same level of the cut-off and resonance frequencies. On these graphs the white areas represent
the zones where the X-wave can propagate, while the shaded areas represent the zones where the
X-wave cannot propagate, either because ω < ωL(x, y) or because ωUH(x, y) < ω < ωL(x, y). These
four values of ω chosen

ω = 1 with only an L cut-off in the plasma, the X-wave can propagate only outside of the L cut-off
curve, it cannot propagate inside of this curve curve

ω = 2.25 with the two cut-offs and the resonance, the X-wave cannot propagate inside of the closed L
cut-off curve, or between the UH resonance curve and the R cut-off curve, but can propagate
otherwise

ω = 3.45 with a two-component UH resonance and a single component R cut-off, the X-wave cannot
propagate between the UH resonance curve and the R cut-off curve, but it can propagate
inside the closed part of the resonance curve and outside the two open curves

ω = 4 with a single component UH resonance and a two-component R cut-off, the X-wave cannot
propagate inside the closed part of the R cur-off curve or between the cut-off and the resonance
curves, but it can propagate between the two parts of the R cut-off curve and to the left of
the resonance curve
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Figure 9: Level sets of the cut-off and resonance frequencies, computed for the ωp and ωc profiles
given in (9) and (10). On the three parts of this figure, the same color scale is used, and four
particular level sets are represented with a thick line, corresponding respectively to the levels 1,
2.25, 3.45, and 4, to emphasize the variety in topology of different level sets. Top left: ωR(x, y).
Top right: ωL(x, y). Bottom: ωUH(x, y).
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Figure 10: For four given values of ω, the sets {(x, y)/ωR(x, y) = ω}, {(x, y)/ωL(x, y) = ω} and
{(x, y)/ωUH(x, y) = ω} are represented, when not empty, on a same graph respectively in dotted
line, dash-dot line and dashed line. They were computed for the ωp and ωc profiles given in (9)
and (10). The shaded areas represent the zones where the X-wave cannot propagate: in dark for
{(x, y)/ω < ωL(x, y)}, in light for {(x, y)/ωUH(x, y) < ω < ωR(x, y)}. Top left: ω = 1, with only
an L cut-off. Top right: ω = 2.25, with the two cut-offs and the resonance. Bottom left : ω = 3.35,
with a two-component UH resonance and a single component R cut-off. Bottom right : ω = 4,
with a single component UH resonance and a two-component R cut-off.
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