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NUMERICAL METHODS FOR
HELMHOLTZ EQUATION IN
INHOMOGENEOUS MEDIA



The cold plasma mathematical model

Maxwell's time-harmonic equations
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Background magnetic field along the z axis
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ne(x) plasma density
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plasma frequency

v

> we = %B: cyclotron frequency

[Stix] A general analysis of this model is able to provide a
surprisingly comprehensive view of plasma waves.



Perpendicular propagation, parallel polarization
O-mode equation and CutOff
2D Helmholtz equation for the total field
o —Au— (1 Cne(x))u=0
e smooth variable coefficient : Cutoff < 1 — Cne(x) =0

Airy function in 1D : —v" +xu =0

v ne<1/C » ne=1/C X ne>1/C
= Propagating waves = Cutoff = Evanescent waves



Piecewise constant and inhomogeneous media
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Piecewise constant and inhomogeneous media
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» Linear wave propagation in inhomogeneous media
» Continuous transition from propagating to evanescent medium
» Accurate numerical simulation of this transition




The boundary value problem
2D Helmholtz equation for the total field
o —Au— (1~ Cne(x))u=0
e smooth variable coefficient

sign = £1, Cutoff < 1 — Cne(x) =0

Artificially truncated domain

Q C R? bounded domain
—Au(x) — K2e(x)u(x) =0, x€Q
Boundary conditions : metallic, absorbing, incoming

Opu +159u =g, x € 00F
u=0, x € 0QP




Plane Wave Methods
For constant coefficients

Incorporate information about the solution
in the basis functions

> Discontinuous Enrichment method

» C. Farhat, I. Harari, L.P. Franca, (2001).
> Partition of Unity Method

> J.M. Melenk, I. Babugka, (1996).
1= Trefftz type method

» E. Trefftz (1926).
» Després et al., Hiptmair et al., Monk et al., Pluymers et al.




Plane Wave Methods
For constant coefficients

Incorporate information about the solution
in the basis functions

> Discontinuous Enrichment method

» C. Farhat, I. Harari, L.P. Franca, (2001).
> Partition of Unity Method

> J.M. Melenk, I. Babugka, (1996).
1= Trefftz type method

» E. Trefftz (1926).
» Després et al., Hiptmair et al., Monk et al., Pluymers et al.

Novelty Challenges

» Design basis functions

» Variable coefficients
» Convergence of the method



Trefftz Discontinuous Galerkin method
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Weak formulation If Lux = 0 in K

uk(—Apv — K2ev)+ ukVpv-n— Viaugnv =0 Vv e Hg
JK oK oK
Find u e H := HHK s.t. Ap(u,v) = Lp(v),Vv € H
K

Discretization
Finite dimensional space Vi C Hg ?
Remark dim(Vk) = p



Generalized Plane Waves (GPWs) at a glance

» Smooth functions
» Associated with partial differential equation Lu =0
» Introduced for variable coefficient operators

» Local approximation

» Generalization of classical PW

Goal

» High order approximation u =~ uj,

Challenges to find u,

» Design
Lu;~0

» Best approximation (Interpolation) properties

V ust. Lu=0,3 u, satisfying ||u — u,|| < Ch"



Local definition of a GPW

Constant coefficient Variable coefficient
L=—A— K%k L=—A—r%(x)
© = exp (1k\/exd - x) p=e ( kv €(xk)d - x—i—HOT)
= Lp=0 = Lp=0



Local definition of a GPW

Constant coefficient Variable coefficient

L=—A— K%k L=—-A—r%(x)

© = exp (1k\/exd - x) p=e ( kv €e(xk)d - x—i—HOT)
= Lp=0 = Lp=0
Definition of a GPW
» For a given point xk .
X '

» For a partial differential operator £ =
» For a parameter g KeT,

v p(x) = exp P(x)
Taylor expansion at xyx
Lp(x) = O (h9)



Building a GPW : The system

—Lo(x) = (aﬁp(x) + (OP(x))* + 0L P(x) + (8y P(x))* + nze(x)) e = 0(h7)



Building a GPW : The system

—Lo(x) = (aﬁp(x) + (OP(x))* + 0L P(x) + (8y P(x))* + nze(x)) e = 0(h7)

j axis
The unknowns x = (x,y) degP
> o =expP
PO = D A=) (y kY -
0SI+JSdegP (l(tgP1 o

v degP and {\j}o<itj<degP = N, = (degP+1)2(degP+2)



Building a GPW : The system

—Lo(x) = (aﬁp(x) + (OP(x))* + 0L P(x) + (8y P(x))* + nze(x)) e = 0(h7)

The unknowns x = (x,y) o
> o =expP
> PO = Y Al x) (v —yk) .
0<i+j<degP NP
v degP and {Ai }o<isj<degp = N, = (deePi1)(degP12)

j axis
q+1

The equations

> Lip(x) = O (h9)
v V(i.j)suchthat 0 < i+j < gq

g—1

i axis

qg—1 q+1

Q’ﬁf, [L(exp P)/exp P] (xx) =0 = Neg = a(g+1)




Building a GPW : The system

—Lo(x) = (aﬁp(x) + (OP(x))* + 0L P(x) + (8y P(x))* + nze(x)) e = 0(h7)

j axis

The unknowns x=(x,y) degP)
> o =expP
> P = Y A=) (y —yk) -
0<i+j<degP NEES
v degP and {Ai }o<isj<degp = N, = (deePi1)(degP12)

j axis
q+1

The equations

> Lip(x) = O (h9)
v V(i.j)suchthat 0 < i+j < gq

g—1

i axis
qg—1 q+1

0.0, [L(exp P)/ exp Pl (xk) =0 _ Neg = 900

Choice degP =g +1



Building a GPW : Structure of the non-linearity
[a'af (02P+(8 P)? + 02P + (9, P) )} (xk)

Identify linear and non-linear terms
(',j)EN2 suchthat 0 <+, <qg-—1
28 ajE(XK) . )
A N U 2)(’ + D2+ G +2)( +1)Aija2
j axis ek

g+1 +ZZ/—k+1)(k+1),k+1j IAK+1,1

k=0 /=0

J i
+ Z ZU —k+1)(k+ )N jokr1 Mkt

k=0 /=0

= Hierarchy of linear sub-systems
of increasing size

1 axis




Building a GPW : Hierarchy of linear sub-systems

] axis

+1
q » For all (/,j) such that i +j = ¢

Wave-front structure
> Xg = [Aojq2s -5 Aeya0] "
> A possible option

Fix /\07g+2 and )\1’54_1

> M= (k+2)(k +1)

qg—1

0o

1 axis
¢ qg—1q+1
[ 1 1 [Aoe+2] *
1 ALe+1 " = Solve by
Mo My Aoy | = forward
: RHS substitution
M I A
| ¢ 0o | [Mer20] LX, = R,

Ly Xy R



Building a GPW : Algorithm

Algorithm 1 Induction on the global degree £ =i + j
1: Fix )\070 =0, ()\0,1, )\1,0) = 1K 6(XK)d

2: for (< 0,qg—1do > q
3: Fix )\o,g_,_z and )\1744_1
4: Re+ f <{)\,"J'};+j§g+1, K, {8;8{,6(XK)}I_+J_<8> > L, Xk
5. for k« 0, ¢ do N
1
6: Ak+2,0—k = Mo e (Re[k +2] - nk>\k,£—k+2) > L
7. P(x,y) «+ Z Aij(x = xi)'(y — yk Y > XK, g
0<i+j<q+1
8: ¢(x) + exp P(x)
Summary
» Analytic formula for A; ; © h

> Lo =[-A—r2e(x)]p = O(h9) @ {Aijliefony



Towards approximation properties
Normalization : Choice of {Aj;}icfo1}

> (Xo,1,A1,0) = 1ky/€(xk)d with d = (cos 6, sin 6)
» Nij=0ifi+j#1 Vo

Local set of approximated solutions
V¢ such that 1 < ¢ < p, 0, =27nl/p

= Vi = Span{piti<i<p

> XK, p, q
> QO[(X,}/) =
exp (zm/e(xK)(cos Oo(x — xk) +sinbu(y — yk)) + H.O.T)

> Ay = (aﬁpg + (BxPe)? + 2Py + (6yPg)2> o

=—k2e+0(h9)



Best approximation properties

Theorem

» Vne N, n>0

» u e C" such that Lu=0, and e € C"
> p =2n+1 basis functions

» g=n+1

e(xk) #0

Build Vi so that Lo = O(h?) YV € Vi
J u, € Vi such that

{ () — 1 ()] < C(n) [x = x4 ™ [l
[V (x) — Vi (x)] < C(n) [x — xk]" [ull o

v

v

v

Numerical results

lu = uall

) =0 (hn—i-l)

Lo ({xeR? |x—x | <h}



PW and GPW for constant coefficient
L=—A—1and u=¢eY

xk = (—3,-1) with p = 2n + 1 basis functions
at the order g=n+1



PW and GPW for constant coefficient
L=—-A—-1and u=¢eY

100 |- n=1PW
—-— n=2PW
—— n=3PW
10—4 1 |—%— n=4PW
—— n=5PW
-®-n=1GPW
10—8 1|-m-n=2GPW
-®-n=3GPW
-4--n =4 GPW
1012 1|-+-n=5GPW
------ order 2
-=-=- order 6
—16
10 10 10® 10* 1072 10°
xk = (—3,-1) with p = 2n + 1 basis functions

at the order g=n+1



PW and GPW for variable coefficient
L=—-A+(x—1)and u= Ai(x)e”

xk = (—3,-1) with p = 2n + 1 basis functions
at the order g=n+1



PW and GPW for variable coefficient
L=—-A+(x—1)and u= Ai(x)e”

100 |- n=1PW
—-— n=2PW
—— n=3PW
10—4 1 |—%— n=4PW
—— n=5PW
-®-n=1GPW
10—8 1|-m-n=2GPW
-®-n=3GPW
-4--n =4 GPW
1012 1|-+-n=5GPW
------ order 2
-=-=- order 6
—16
10 10 10® 10* 1072 10°
xk = (—3,-1) with p = 2n + 1 basis functions

at the order g=n+1



Convergence of the GPW+TdG method

GPW space Vi [IG & Després '14]
Vi ¢ Hx = {v € L%(K) : v smooth

and — Apv — Kk2ev =0, on K}
Stabilized formulation

Bhu(u,v) = Ap(u, v) + m/ Y(Apu + K2u)(Apv + K2v)dS
Q

Coercivity and continuity
lullbe < |Ba(u, u))l
[Bh(u, v))| < Cllullpe+|Ivlipe
Theorem (smooth solution) [IG & Monk '16]
[u— upll 2@y < Ch"

provided that p = 2n+ 1, n > 2, g = n + 1 and for given flux parameters



GPW + TdG

2D test case : L?(Q2) norm convergence
Uex(x) = Ai(k?3y), k = 15

10°
10-1 L
102 F
1073 L
10 F
10-5 L
e 11=2=+1
e =32+ 1
5 n=4=q+1
107 E |wwwssi order3
wannuorder4
order 5
7 .
10
10* 102

V'Npor /P



4.5

3.5

y variable
n
o w

n

2
x variable




WKB expansion for Helmholtz equation
—Au—r*e(X)u=0

Ansatz : p(x) = A( ) exp 1kS(x)
(A — K2e(x)p(x) = K2A(x (|vs —e x)) S (x)
A(X)AS(x) + VA(x) - V5(x) ) e
( A(x) ) 50

» O(x?) terms - Eikonal equation for S
= |[VS(x)|? —e(x) =0 ~ A S are

» O(k') terms - Transport equation independent of x
= V- (A(x)VS(x)) =0

» Neglect higher order terms

Towards variable amplitude GPWs



Back to GPWs

L=—A—r%e(x)
Ansatz : p(x) = A(x) exp 1£5(x)

(—8 = 2e(x)e(x) = 2ARX)(IVS(I2 = e(x) ) S0
- m(A x)AS(x) + VA(x) - VS(X)) e S(x

(
— (BA(x) )t



Back to GPWs

L=—A—r%e(x)
Ansatz : p(x) = A(x) exp 1£5(x)

(-8~ Re)e(x) = w2A)(ITS()P — e(x)) et
_m<A x)AS(x) + VA(x) - VS(x)) 1S (x

(
( (X)) 1.S(x)
To get an approximate solution

» O(x?) terms - Eikonal equation for S
= [VS(X)I* —€(x¢) =0
» Gather the remaining terms - Equation for A

AA(X) + 15V - (AX)VS(x)) + HZA(X)(|v5(x)|2 - e(x)) = O(h9)

= L =~ 0 independently of x



WKB for a vector equation

WKB ansatz
0 (x) = A(x)eS™)

O(x?) terms

M(S(x))A(x)

For a matrix M e independent of A
e depending on the coefficients of the PDE

WKB

» Determinant of M

= Solved for S, independent of A = A S are

> Eigenvectors of M independent of &
= Solved for A for a given S

> Neglect higher order terms



Back to GPWs for Maxwell’s equation
Lv =V x Vv — k2ev
Ansatz : ﬁ(x) = A(x) exp2kS5(x)

L4 =r2[-VS x (VS x A) — cA] &S
+ 16 [VS x (V x A) +V x (VS x A)] e
+[V x V x A] &3



Back to GPWs for Maxwell’s equation
Lv =V x Vv — Kk?ev
_>
Ansatz : 9 (x) = A(x) exp1kS(x)
L4 =r2[-VS x (VS x A) — cA] &S
+165[VS x (V x A) +V x (VS x A)] e
+[V x V x A] &3

To get an approximate solution = L1 = 0 independently of

» O(x?) terms - Eikonal equation for S
= det (VS - VST — |VS|2ld —€) =0 at x¢
» Gather the remaining terms - Equations for A

VxVxA+1kV x(VSxA)
+16VS x (V x A) — k2VS x (VS x A) — x%A = O(h?)



Design of a WKB-GPW : The system
L) = (V x V x —r?e(x) [AK) exprr5(x)| = O(h)
The unknowns
> E} = AexpikS
> An(x) = Z )‘?,j,k(x - XG)i(y - YG)j(Z - ZG)k

0<i+j+k<D
2
v D and ()\;(,j,ldA{,j,k’)\l;,j,k){ofi'i'j'i'kSD} = Nun = 3(D+21) D
The equations
> L(x) = O (h?)
v V(i,j,k)suchthat 0 <i+j+k<qg-—1
a;a{/aé‘ [L(AexpikS)/expirS] (xg) =0 (a-1)

= Neg =375

Choice D=g+1



Design of a GPW : Structure of the system

[a;awzk(v %V x A+ 1KV x (VS x A)

1RV S X (VX A)— K2V S x (VSxA)—mzeA)] (x¢)

Hierarchy of linear sub-systems of increasing size
» Equations for i +j+ k=14

8;8;,8;‘ (V X V X A) (XG) = RHS,',Lk

y
> Unknowns ()‘);,s,tv )‘r,s,tv )‘f,s,t){r+s+t=é+2}
» Blocs of 3 coupled equations

VxVxA=—AA+V(V:A)



Summary
WKB inspired GPWs

For a scalar or vector operator £

Ansatz

o(x) = A(x) exp1kS(x)
E)(x) = A(x) exp1kS(x)

From lowest order terms

» Equation for S
v Phase function S independent of x
Remaining terms

» Approximate equation for A/A
X Amplitude function A/A not independent of x



FUTURE WORK

GPWs

» High frequency regime h oc A
> Extension to 3D scalar case
» Collaboration with G. Sylvand (Airbus)

» Focus on vector valued equations

Trefftz DG + GPWs

» h-convergence and p-convergence
» Collaboration with R. Hiptmair (ETH Zurich)

> Parallel implementation for the 3D Helmholtz equation
» Collaboration with G. Stadler (NYU)

» Towards Parallel implementation for the cold plasma model



PSEUDO-SPECTRAL METHODS

FOR THE PDES ON SURFACES OF
GENUS ONE



Partial differential methods on surfaces

Scalar valued partial differential equations

> Finite Elements

» G. Dziuk and C. Elliott (2013).
> Finite Volumes

» D. Calhoun, C. Helzel, R. Leveque (2008).
> Implicit representation of the surface

» Level set approach
D. Adalsteinsson, J. Sethian (1997).
» Closest point method
C. Macdonald, J. Brandman, S. Ruuth (2011).




Partial differential methods on surfaces

Vector valued partial differential equations

> Spherical harmonic expansions [Restricted to the sphere]
» Both in the Physics and the Math literature

> Diffuse interface approach
> A. Ratz, A. Voigt (2006).

> Discrete Exterior Calculus
> A. Hirani (2003).

== Spectral methods




Partial differential methods on surfaces

Vector valued partial differential equations

> Spherical harmonic expansions [Restricted to the sphere]
» Both in the Physics and the Math literature

> Diffuse interface approach
> A. Ratz, A. Voigt (2006).

> Discrete Exterior Calculus
> A. Hirani (2003).

== Spectral methods

Novelty Challenges

» Discretization
» Genus 1 surfaces ] i
» Harmonic vector fields



Differential operators on surfaces x € R3

Notation G = Guu Guv with Gjj = 9jx - Jjx and detG = g
GUV GVV

For tangential vector fields F = F10,x + F20,x, scalar fields f

Grad f = Vf = [G"V&,f— G“Vavf] Oux+ [— G“Vauf+ G““c‘)vf] Ovx
g g g g
_ 1
Div(F) = Vr-F = —[0, (V&F') + 0, (v/gF?) ]
NS
1 G G G G
Arf=— |9, [ o, f— 29, f +av<ﬂavf— wo fﬂ
T Ve [ “<¢§ N ) VE VE "
CurlF = —Vr-(nxF)

_ %(au (GuF + GuF?) — 8, (GuyFY + Gy F?))



Pseudo-spectral discretization

Fourier coefficients - Genus 1 surfaces
u € [0,27] and v € [0, 27]

Fourier coefficients

1 2 2
— —1(mu+nv)
[F(f)]mn - (27'(')2 \/0‘ A f(U, V)e dudv

Function discretization

f = {f(ux, v;)} on an uniform grid with N? points

2 N N
mn— < ) ZZf uy, V/ —u(muetnv)

k=1 I=1
Operators discretization

» Derivation = In Fourier space

» Multiplication = In physical space

Notation : Gradp, Divy, Curly, Ar,h



Hodge decomposition

The orthogonal decomposition

J=V5ia+nxVr8+jy, with a, § scalar functions

Vra curl free component
n x V[ divergence free component
jH harmonic vector field

Computing the decomposition

» Solve Ara = Vr -j
» Solve Ar3 = —Vr-(nxj)
» Compute a basis of harmonic vector fields {hy, hy}
(h1,h1)r (hl,h2>r> <C1> ((hl,j>r>
» Solve = .
((h27 hi)r (ha,hy)r/) \ @ (ho,j)r
> j=Vra+n x VrB + c1thy + ooho



Harmonic vector fields on a surface of genus 1
Definition of the space of dimension 2
Div(F) = Vi -F=0
Curl(F) = Vr-(n x F) =0
Remark : F and n x F

At the discrete level
Find the nullspace of the 2N? x 2/N? matrix

{ Divy(F) = 0
Curly(F) =0

= Basis of harmonic vector fields {hy,hy}

Randomized method for rank-deficient linear systems
[J. Sifuentes, Z. Gimbutas, L. Greengard (2015)]

(Ap+75T)7 = Apg = Ap(y — ) =0



The Laplace-Beltrami equation
Arp=b (%)

At the continuous level

Mr={f:T = R|(f,e)r =0} with e(u,v) =1

(%) invertible from My to Mr
= Vb € Mr, 3l¢ € My such that

Ard+ (e, ¢)re=b

At the discrete level
Solve

(Ar,h + 6€T) $=h

RN -1
Preconditioner : (A, +117)



Application to plasma physics

KNOTATRON
COURTESY OF S.
HubDsoN

STELLARATOR




3D parametrization of a Stellarator geometry

Garabedian coordinates
x(s,u,v) =

cos v(ro(v) + R(s,u,v) (3 Amncos((1 — m)u+ nv) — r(v)) ),
sin v(ro(v) + R(s,u,v) (3 Amncos((1 — m)u+ nv) — ro(v))>,
zo(v) + R(s,u, v) (O A psin((1 — m)u + nv) — z5(v)) .

» Poloidal and toroidal angles u € [0,27], v € [0, 27]
Radius-like parameter s € [0, 1]

Magnetic axis (rp(v), zo(v))

Outer surface

(>-Ampcos((1—m)u+nv), > Appsin((1 — m)u+ nv))
Stretching function R(s, u, v)

Nested genus 1 surfaces for increasing values of s

v

v

v

v



3D parametrization of a Knotatron geometry

(p, g)-knot coordinates
Parametrized knot curve defined by X,(v) as

x(v) = cos(pv)(Ro + r cos(gqv)),
yi(v) = sin(pv)(Ro + r cos(qv)),
zi(v) = rpsin(qv).

» Tangent unit tangent to the curve T(v)
» Normal unit vector
N(v) = (cos(pv) cos(gv), sin(pv) cos(gv),sin(qv))
» Binormal unit vector B(v) = T(v) x N(v)
The desired surface is then defined as

X(s,u,v) = X (v) + gcos uN(v)+ %sin u B(v).



The code
INPUT
» Geometry x
» Component of the metric tensor Gj;
» and their first and second order derivatives
OPERATORS
» From point values to point values
» FFT based
NUMERICAL SOLVE
» O(N?log N) for N? points to represent the surface
> lterative methods Bicg stab
IMPLEMENTATION
» Fortran
Remarks

» Standard geometry input
Independent from the rest of the code
» Global surface parametrization



A Stellarator geometry

Parameter values

v

ro(v) =4.8+0.1cosv
zo(v) =0.1sinv

v

» s=0.8
» R(s,u,v) =
s(1+0.01(1 — s)cos usinv)
(mwin] 1] 0 [ 1 |

-1 0.17 | 0.11 0
0 0 1 0.07
1 0 4.5 0
2 0 |-025]|-045




The Laplace-Beltrami equation on our Stellarator geometry

Parameter values
> 1/J(U V) — gCos utsinv + ecos(ﬁ(u—v))
> Yo = - fgre
> b= Artyo
> k=12

|~

Numerical results
Error ||¢n — tol2,r

N Iterations Time Error
47 99 0.23E+01 | 0.12E+02
95 125 0.97E+01 | 0.36E-02

191 136 0.91E+402 | 0.11E-06
383 121 0.54E4-03 | 0.42E-12
767 114 0.86E+03 | 0.44E-12




A (2, 3)-knot geometry

==

Parameters :
» Rp=10& n =1
» p=2&qg=3
»a=b=2
» s=09



Harmonic vector fields on our (2, 3)-knot surface

Numerical results
Error || Divyt)||2,r and || Curlpi||2,r

N Iterations Time Div error | Curl error
47 676 0.23E+02 | 0.49E-09 | 0.49E-09
95 532 0.53E+402 | 0.63E-10 | 0.17E-09
191 607 0.70E+4-03 | 0.56E-10 | 0.11E-09
383 658 0.50E+4-04 | 0.10E-08 | 0.13E-08
767 6386 0.69E+04 | 0.12E-09 | 0.38E-09




A (3,

4)-knot geometry

p—

Parameters :

>

>

>

v

Ry=10& nn=1
p=3&qg=4
a=b=2
s=209

DAC



Hodge decomposition on our (3, 4)-knot surface

Parameter values
> j(x) = V (sinwkk - x) + n x V (sinukk - x)
» k=10
> k = (0,0,1)
»jr=i—(@G-n)n

Numerical results
Error |ljT — Via —n x VB — ju2

N Iterations Time Error
47 867 0.14E+03 | 0.49E-02
95 839 0.70E+4+03 | 0.94E-02
191 967 0.56E+-04 | 0.10E-04
383 1056 0.37E+05 | 0.11E-06
767 1181 0.93E+05 | 0.11E-08




FUTURE WORK

Electromagnetic scattering : Gen. Debye sources (epstein et al. 10,13]
E=1kA—V¢—V xAp,
B=VxA+:1kA, — Vo,

> POtentIa|S and Antlpotentla|s Symmetry, Decouples at zero frequency

» Combined Source Integral Equation method

A(m)(x) = /rgk(X—Y)j(m)(Y)dAy & P(my(x) = /rgk(X—Y)q(m)(Y)dAy

» Laplace-Beltrami equations for surface unknowns

Taylor states or Beltrami fields [orei cerfon '16]
VxB=)B

Anisotropic Maxwell equations
> Volume integral representation



Thank you for your attention

Collaborators : B. Després, L. Greengard, P. Monk.





