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Numerical methods for
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inhomogeneous media



The cold plasma mathematical model
Maxwell’s time-harmonic equations
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◮ Background magnetic field along the z axis

◮ ω2
p(x) =

e2ne(x)
ε0me

plasma frequency

◮ ne(x) plasma density

◮ ωc = eB0
me

cyclotron frequency

[Stix] A general analysis of this model is able to provide a

surprisingly comprehensive view of plasma waves.



Perpendicular propagation, parallel polarization

O-mode equation and CutOff

2D Helmholtz equation for the total field

• −∆u − ω2

c2
(1− Cne(x))u = 0

• smooth variable coefficient : Cutoff ⇔ 1− Cne(x) = 0

Airy function in 1D : −u′′ + xu = 0
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✓ ne < 1/C
⇒ Propagating waves

◮ ne = 1/C
⇒ Cutoff

✗ ne > 1/C
⇒ Evanescent waves



Piecewise constant and inhomogeneous media

Luneburg Lens

Radius R = 1

ǫ(x) = 2− |x|2/R2

L = −∆− κ2ǫ(x)

Piecewise constant approximation Approximation using ∇ǫ
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◮ Linear wave propagation in inhomogeneous media
◮ Continuous transition from propagating to evanescent medium
◮ Accurate numerical simulation of this transition



The boundary value problem

2D Helmholtz equation for the total field

• −∆u − ω2

c2
(1− Cne(x))u = 0

• smooth variable coefficient
sign = ±1, Cutoff ⇔ 1− Cne(x) = 0

Artificially truncated domain

Ω ⊂ R
2 bounded domain

−∆u(x)− κ2ǫ(x)u(x) = 0, x ∈ Ω

Boundary conditions : metallic, absorbing, incoming

∂nu + ıκϑu = g , x ∈ ∂ΩR

u = 0, x ∈ ∂ΩD



Plane Wave Methods

For constant coefficients

Incorporate information about the solution
Incorporate information in the basis functions

➣ Discontinuous Enrichment method
◮ C. Farhat, I. Harari, L.P. Franca, (2001).

➣ Partition of Unity Method
◮ J.M. Melenk, I. Babuška, (1996).

☞ Trefftz type method

◮ E. Trefftz (1926).
◮ Després et al., Hiptmair et al., Monk et al., Pluymers et al.



Plane Wave Methods

For constant coefficients

Incorporate information about the solution
Incorporate information in the basis functions

➣ Discontinuous Enrichment method
◮ C. Farhat, I. Harari, L.P. Franca, (2001).

➣ Partition of Unity Method
◮ J.M. Melenk, I. Babuška, (1996).

☞ Trefftz type method

◮ E. Trefftz (1926).
◮ Després et al., Hiptmair et al., Monk et al., Pluymers et al.

NoveltyNoveltyNovelty Challenges

◮ Variable coefficients
◮ Design basis functions

◮ Convergence of the method



Trefftz Discontinuous Galerkin method

Helmholtz equation Lu = 0

Lu := −∆u − κ2ǫ(x)u
Mesh Th = {K}
TdG space

HK = {v ∈ L2(K ) : v smooth,
−∆v − κ2ǫ(x)v = 0}

Weak formulation If LuK = 0 in K̊
∫

K

uK (−∆hv − κ2ǫv)+
∫

∂K
uK∇hv · n−

∫

∂K
∇huK ·nv = 0 ∀v ∈ HK

Find u ∈ H :=
∏

K

HK s.t. Ah(u, v) = ℓh(v),∀v ∈ H

Discretization
Finite dimensional space VK ⊂ HK ?

Remark dim(VK ) = p



Generalized Plane Waves (GPWs) at a glance

◮ Smooth functions

◮ Associated with partial differential equation Lu = 0
◮ Introduced for variable coefficient operators

◮ Local approximation

◮ Generalization of classical PW

Goal

◮ High order approximation u ≈ ua

Challenges to find ua

◮ Design
Lua ≈ 0

K ∈ Th

xK

h

◮ Best approximation (Interpolation) properties

∀ u s.t. Lu = 0,∃ ua satisfying ‖u − ua‖ ≤ Chn



Local definition of a GPW

Constant coefficient

(x)L = −∆− κ2ǫK (x)

ϕ = exp (ıκ
√
ǫKd · x)

⇒ Lϕ = 0

Variable coefficient

L = −∆− κ2ǫ(x)

ϕ = exp
(
ıκ
√
ǫ(xK )d · x+ H.O.T.

)

⇒ Lϕ ≈ 0



Local definition of a GPW

Constant coefficient

(x)L = −∆− κ2ǫK (x)

ϕ = exp (ıκ
√
ǫKd · x)

⇒ Lϕ = 0

Variable coefficient

L = −∆− κ2ǫ(x)

ϕ = exp
(
ıκ
√
ǫ(xK )d · x+ H.O.T.

)

⇒ Lϕ ≈ 0

Definition of a GPW

◮ For a given point xK
◮ For a partial differential operator L
◮ For a parameter q K ∈ Th

xK

h

✓ ϕ(x) = expP(x)

✓

{
Taylor expansion at xK
Lϕ(x) = O (hq)



Building a GPW : The system

−Lϕ(x) =
(

∂
2
xP(x) + (∂xP(x))

2 + ∂
2
yP(x) + (∂yP(x))

2 + κ
2
ǫ(x)

)

e
P(x) = O (hq)



Building a GPW : The system

−Lϕ(x) =
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∂
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xP(x) + (∂xP(x))

2 + ∂
2
yP(x) + (∂yP(x))

2 + κ
2
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)

e
P(x) = O (hq)

The unknowns 00000x = (x , y )

◮ ϕ = expP

◮ P(x) =
∑

0≤i+j≤degP

λi ,j(x− xK )
i(y − yK )

j

✓ degP and {λi ,j}0≤i+j≤degP

i axis

j axis

degP

degP

⇒ Nun = (degP+1)(degP+2)
2
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The equations

◮ Lϕ(x) = O (hq)

✓ ∀(i , j) such that 0 ≤ i + j < q

∂ix∂
j
y [L(expP)/ expP ] (xK ) = 0

i axis

j axis

q − 1 q + 1

q − 1

q + 1

⇒ Neq = q(q+1)
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∂
2
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2 + ∂
2
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2 + κ
2
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∑
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The equations

◮ Lϕ(x) = O (hq)

✓ ∀(i , j) such that 0 ≤ i + j < q

∂ix∂
j
y [L(expP)/ expP ] (xK ) = 0

i axis

j axis

q − 1 q + 1

q − 1

q + 1

⇒ Neq = q(q+1)
2

Choice degP = q + 1



Building a GPW : Structure of the non-linearity
[
∂ix∂

j
y

(
∂2xP + (∂xP)

2 + ∂2yP + (∂yP)
2
)]

(xK )

Identify linear and non-linear terms

LOL

LOL

LOL

i axis

j axis

q − 1 q + 1

q − 1

q + 1

j

i

∂2xP

∂2yP

(∂xP )
2

(∂yP )
2

∀(i , j) ∈ N
2 such that 0 ≤ i + j ≤ q − 1

−κ2∂
i
x∂

j
y ǫ(xK )

i !j!
= (i + 2)(i + 1)λi+2,j + (j + 2)(j + 1)λi ,j+2

+
i∑

k=0

j∑

l=0

(i − k + 1)(k + 1)λi−k+1,j−lλk+1,l

+

j∑

k=0

i∑

l=0

(j − k + 1)(k + 1)λi−l ,j−k+1λl ,k+1

LOL

⇒ Hierarchy of linear sub-systems
of increasing size

lol
lol



Building a GPW : Hierarchy of linear sub-systems

i axis

j axis

q − 1 q + 1

q − 1

q + 1

ℓ

ℓ

◮ For all (i , j) such that i + j = ℓ
Wave-front structure

◮ Xℓ := [λ0,ℓ+2, . . . , λℓ+2,0]
T

◮ A possible option
Fix λ0,ℓ+2 and λ1,ℓ+1

◮ Πk := (k + 2)(k + 1)

lol




1
1

Π0 Πℓ
. . .

. . .

Πℓ Π0




︸ ︷︷ ︸
Lℓ




λ0,ℓ+2

λ1,ℓ+1

λ2,ℓ
...

λℓ+2,0




︸ ︷︷ ︸
Xℓ

=




∗
∗

RHS

0




︸ ︷︷ ︸
Rℓ

⇒ Solve by
forward

substitution

LℓXℓ = Rℓ



Building a GPW : Algorithm

Algorithm 1 Induction on the global degree ℓ = i + j

1: Fix λ0,0 = 0, (λ0,1, λ1,0) = ıκ
√
ǫ(xK )d

2: for ℓ← 0, q − 1 do ⊲ q

3: Fix λ0,ℓ+2 and λ1,ℓ+1

4: Rℓ ← f

(
{λi ,j}i+j≤ℓ+1, κ,

{
∂ix∂

j
y ǫ(xK )

}
i+j≤ℓ

)
⊲ L, xK

5: for k ← 0, ℓ do

6: λk+2,ℓ−k :=
1

Πℓ−k

(
Rℓ[k + 2]− Πkλk,ℓ−k+2

)
⊲ L

7: P(x , y)←
∑

0≤i+j≤q+1

λi ,j(x − xK )
i (y − yK )

j ⊲ xK , q

8: ϕ(x)← expP(x)

Summary
◮ Analytic formula for λi ,j ⊘ h

◮ Lϕ = [−∆− κ2ǫ(x)]ϕ = O(hq) ⊘ {λi ,j}i∈{0,1}



Towards approximation properties

Normalization : Choice of {λi ,j}i∈{0,1}
◮ (λ0,1, λ1,0) = ıκ

√
ǫ(xK )d with d = (cos θ, sin θ)

◮ λi ,j = 0 if i + j 6= 1 ∀ θ

Local set of approximated solutions

∀ℓ such that 1 ≤ ℓ ≤ p, θℓ = 2πℓ/p

⇒ VK = Span{ϕℓ}1≤ℓ≤p

⊲ xK , p, q

◮ ϕℓ(x , y) =

exp
(
ıκ
√
ǫ(xK )(cos θℓ(x − xK ) + sin θℓ(y − yK )) + H.O.T

)

◮ ∆ϕℓ =
(
∂2xPℓ + (∂xPℓ)

2 + ∂2yPℓ + (∂yPℓ)
2
)

︸ ︷︷ ︸
=−κ2ǫ+O(hq)

ϕ



Best approximation properties

Theorem

◮ ∀n ∈ N, n > 0

◮ u ∈ Cn+1 such that Lu = 0, and ǫ ∈ Cn
◮ p = 2n + 1 basis functions

◮ q = n + 1

◮ ǫ(xK ) 6= 0

◮ Build VK so that Lϕ = O(hq) ∀ϕ ∈ VK

◮ ∃ ua ∈ VK such that

{
|u (x)− ua (x)| ≤ C (n) |x− xK |n+1 ‖u‖Cn+1

|∇u (x)−∇ua (x)| ≤ C (n) |x− xK |n ‖u‖Cn+1

Numerical results

‖u − ua‖
L∞

(
{x∈R2,|x−xK |<h}

) = O
(
hn+1

)



PW and GPW for constant coefficient

L = −∆− 1 and u = eıy

xK = (−3,−1) with p = 2n + 1 basis functions
at the order q = n + 1



PW and GPW for constant coefficient

L = −∆− 1 and u = eıy
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PW and GPW for variable coefficient

L = −∆+ (x − 1) and u = Ai(x)eıy

xK = (−3,−1) with p = 2n + 1 basis functions
at the order q = n + 1
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Convergence of the GPW+TdG method

GPW space VK [IG & Després ’14]

VK 6⊂ HK = {v ∈ L2(K ) : v smooth
oooooooooooooooooooo and −∆hv − κ2ǫv = 0, on K}
Stabilized formulation

Bh(u, v) = Ah(u, v) + ıκ

∫

Ω
γ(∆hu + κ2u)(∆hv + κ2v)dS

Coercivity and continuity

‖u‖2DG ≤ |Bh(u, u))|
|Bh(u, v))| ≤ C‖u‖DG+‖v‖DG

Theorem (smooth solution) [IG & Monk ’16]

‖u − uh‖L2(Ω) ≤ Chn

provided that p = 2n + 1, n ≥ 2, q = n + 1 and for given flux parameters



GPW + TdG

2D test case : L2(Ω) norm convergence

uex(x) = Ai(κ2/3y), κ = 15

101 102

L
 e

rr
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n=4=q
n=1=q-1
n=2=q-1
n=3=q-1
n=4=q-1
n=2=q+1
n=3=q+1
n=4=q+1
order 3
order 4
order 5

√

NDoF /p





WKB expansion for Helmholtz equation

−∆u − κ2ǫ(x)u = 0

Ansatz : ϕ(x) = A(x) exp ıκS(x)

(−∆− κ2ǫ(x))ϕ(x) = κ2A(x)
(
|∇S(x)|2 − ǫ(x)

)
eıκS(x)

− ıκ
(
A(x)∆S(x) +∇A(x) · ∇S(x)

)
eıκS(x)

−
(
∆A(x)

)
eıκS(x)

◮ O(κ2) terms - Eikonal equation for S
O(κ2) terms ⇒ |∇S(x)|2 − ǫ(x) = 0

◮ O(κ1) terms - Transport equation
O(κ1) terms ⇒ ∇ ·

(
A(x)∇S(x)

)
= 0

◮ Neglect higher order terms

⇒ A, S are
independent of κ

Towards variable amplitude GPWs



Back to GPWs

L = −∆− κ2ǫ(x)

Ansatz : ϕ(x) = A(x) exp ıκS(x)

(−∆− κ2ǫ(x))ϕ(x) = κ2A(x)
(
|∇S(x)|2 − ǫ(x)

)
eıκS(x)

− ıκ
(
A(x)∆S(x) +∇A(x) · ∇S(x)

)
eıκS(x)

−
(
∆A(x)

)
eıκS(x)



Back to GPWs

L = −∆− κ2ǫ(x)

Ansatz : ϕ(x) = A(x) exp ıκS(x)

(−∆− κ2ǫ(x))ϕ(x) = κ2A(x)
(
|∇S(x)|2 − ǫ(x)

)
eıκS(x)

− ıκ
(
A(x)∆S(x) +∇A(x) · ∇S(x)

)
eıκS(x)

−
(
∆A(x)

)
eıκS(x)

To get an approximate solution

◮ O(κ2) terms - Eikonal equation for S

⇒ |∇S(x)|2 − ǫ (xG ) = 0

◮ Gather the remaining terms - Equation for A

∆A(x) + ıκ∇ ·
(
A(x)∇S(x)

)
+ κ2A(x)

(
|∇S(x)|2 − ǫ(x)

)
= O(hq)

⇒ Lϕ ≈ 0 independently of κ



WKB for a vector equation

WKB ansatz
−→
ψ (x) = A(x)eıκS(x)

O(κ2) terms

M(S(x))A(x)

For a matrixM • independent of A
For a matrixM • depending on the coefficients of the PDE

WKB

◮ Determinant ofM
⇒ Solved for S , independent of A

◮ Eigenvectors ofM
⇒ Solved for A for a given S

◮ Neglect higher order terms

⇒ A, S are
independent of κ



Back to GPWs for Maxwell’s equation

Lv ≡ ∇×∇v − κ2ǫv

Ansatz :
−→
ψ (x) = A(x) exp ıκS(x)

L−→ψ = κ2 [−∇S × (∇S × A)− ǫA] eıκS
+ ıκ [∇S × (∇×A) +∇× (∇S × A)] eıκS

+ [∇×∇× A] eıκS



Back to GPWs for Maxwell’s equation

Lv ≡ ∇×∇v − κ2ǫv

Ansatz :
−→
ψ (x) = A(x) exp ıκS(x)

L−→ψ = κ2 [−∇S × (∇S × A)− ǫA] eıκS
+ ıκ [∇S × (∇×A) +∇× (∇S × A)] eıκS

+ [∇×∇× A] eıκS

To get an approximate solution⇒ L−→ψ ≈ 0 independently of κ

◮ O(κ2) terms - Eikonal equation for S
Order 0 ⇒ det

(
∇S · ∇ST − |∇S |2Id − ǫ

)
= 0 at xG

◮ Gather the remaining terms - Equations for A
Order 1

∇×∇×A+ıκ∇×(∇S×A)∂ix∂jy∂kz ∂ix∂jy∂kz ∂ix∂jy∂kz ∂ix∂jy∂kz 00000000000

+ıκ∇S × (∇× A)− κ2∇S × (∇S × A)− κ2ǫA = O(hq)



Design of a WKB-GPW : The system
L
−→
ψ (x) =

(

∇ × ∇ × −κ
2
ǫ(x)

) [

A(x) exp ıκS(x)
]

= O(h
q
)

The unknowns

◮

−→
ψ = A exp ıκS

◮ Aα(x) =
∑

0≤i+j+k≤D

λαi ,j ,k(x − xG )
i (y − yG )

j(z − zG )
k

✓ D and (λxi ,j ,k , λ
y
i ,j ,k , λ

z
i ,j ,k){0≤i+j+k≤D} ⇒ Nun = 3 (D+1)2D

2

The equations

◮ L−→ψ (x) = O (hq)

✓ ∀(i , j , k) such that 0 ≤ i + j + k ≤ q − 1

∂ix∂
j
y∂

k
z [L(A exp ıκS)/ exp ıκS ] (xG ) = 0

⇒ Neq = 3q2(q−1)
2

Choice D = q + 1



Design of a GPW : Structure of the system

[
∂ix∂

j
y∂

k
z

(
∇×∇× A+ ıκ∇× (∇S × A)∂ix∂

j
y∂

k
z ∂

i
x∂

j
y∂

k
z

∂ix∂
j
y∂

k
z ∂

i
x∂

j
y∂

k
z +ıκ∇S×(∇×A)−κ2∇S×(∇S×A)−κ2ǫA

)]
(xG )

Hierarchy of linear sub-systems of increasing size

◮ Equations for i + j + k = ℓ

∂ix∂
j
y∂

k
z

(
∇×∇× A

)
(xG ) = RHSi ,j ,k

◮ Unknowns (λxr ,s,t , λ
y
r ,s,t , λ

z
r ,s,t){r+s+t=ℓ+2}

◮ Blocs of 3 coupled equations

∇×∇× A = −∆A+∇(∇ · A)



Summary

WKB inspired GPWs

For a scalar or vector operator L
Ansatz

ϕ(x) = A(x) exp ıκS(x)

−→
ψ (x) = A(x) exp ıκS(x)

From lowest order terms

◮ Equation for S

✓ Phase function S independent of κ

Remaining terms

◮ Approximate equation for A/A

✗ Amplitude function A/A not independent of κ



Future work
GPWs

◮ High frequency regime h ∝ λ
◮ Extension to 3D scalar case

◮ Collaboration with G. Sylvand (Airbus)

◮ Focus on vector valued equations

Trefftz DG + GPWs

◮ h-convergence and p-convergence
◮ Collaboration with R. Hiptmair (ETH Zurich)

◮ Parallel implementation for the 3D Helmholtz equation
◮ Collaboration with G. Stadler (NYU)

◮ Towards Parallel implementation for the cold plasma model



Pseudo-spectral methods
for the PDEs on surfaces of

genus one



Partial differential methods on surfaces

Scalar valued partial differential equations

➣ FinitejElements
◮ G. Dziuk and C. Elliott (2013).

➣ FinitejVolumes
◮ D. Calhoun, C. Helzel, R. Leveque (2008).

➣ Implicit representation of the surface
◮ Level set approach

D. Adalsteinsson, J. Sethian (1997).
◮ Closest point method

C. Macdonald, J. Brandman, S. Ruuth (2011).



Partial differential methods on surfaces

Vector valued partial differential equations

➣ Spherical harmonic expansions [Restricted to the sphere]
◮ Both in the Physics and the Math literature

➣ Diffuse interface approach
◮ A. Ratz, A. Voigt (2006).

➣ Discrete ExteriorjCalculus
◮ A. Hirani (2003).

☞ Spectral methods



Partial differential methods on surfaces

Vector valued partial differential equations

➣ Spherical harmonic expansions [Restricted to the sphere]
◮ Both in the Physics and the Math literature

➣ Diffuse interface approach
◮ A. Ratz, A. Voigt (2006).

➣ Discrete ExteriorjCalculus
◮ A. Hirani (2003).

☞ Spectral methods

NoveltyNoveltyNovelty Challenges

◮ Genus 1 surfaces
◮ Discretization

◮ Harmonic vector fields



Differential operators on surfaces ooooo x ∈ R
3

Notation G =

(
Guu Guv

Guv Gvv

)
with Gij = ∂ix · ∂jx and detG = g

For tangential vector fields F = F 1∂ux+ F 2∂vx, scalar fields f

Grad f = ∇Γf =

[
Gvv

g
∂uf −

Guv

g
∂v f

]
∂ux+

[
−Guv

g
∂uf +

Guu

g
∂v f

]
∂vx

Div(F) = ∇Γ · F =
1√
g

[
∂u

(√
gF 1

)
+ ∂v

(√
gF 2

) ]

∆Γf =
1√
g

[
∂u

(
Gvv√
g
∂uf −

Guv√
g
∂v f

)
+ ∂v

(
Guu√
g
∂v f −

Guv√
g
∂uf

)]

Curl F = −∇Γ · (n× F)

=
1√
g

(
∂u

(
GuvF

1 + GvvF
2
)
− ∂v

(
GuuF

1 + GuvF
2
) )



Pseudo-spectral discretization
Fourier coefficients - Genus 1 surfaces
u ∈ [0, 2π] and v ∈ [0, 2π]

Fourier coefficients

[F(f )]mn ≡
1

(2π)2

∫ 2π

0

∫ 2π

0
f (u, v)e−ı(mu+nv)du dv

Function discretization

~f = {f (uk , vl)} on an uniform grid with N2 points

f̂mn =

(
h

2π

)2 N∑

k=1

N∑

l=1

f (uk , vl)e
−ı(muk+nvl )

Operators discretization

◮ Derivation ⇒ In Fourier space

◮ Multiplication ⇒ In physical space

Notation : Gradh, Divh, Curlh, ∆Γ,h



Hodge decomposition

The orthogonal decomposition

j = ∇Γα+ n×∇Γβ + jH , with α , β scalar functions

∇Γα curl free component
n×∇Γβ divergence free component
jH harmonic vector field

Computing the decomposition

◮ Solve ∆Γα = ∇Γ · j
◮ Solve ∆Γβ = −∇Γ · (n× j)

◮ Compute a basis of harmonic vector fields {h1,h2}

◮ Solve

(
〈h1,h1〉Γ 〈h1,h2〉Γ
〈h2,h1〉Γ 〈h2,h2〉Γ

)(
c1
c2

)
=

(
〈h1, j〉Γ
〈h2, j〉Γ

)

➣ j = ∇Γα+ n×∇Γβ + c1h1 + c2h2



Harmonic vector fields on a surface of genus 1

Definition of the space of dimension 2

Div(F) = ∇Γ · F = 0
Curl(F) = ∇Γ · (n× F) = 0

Remark : F and n× F

At the discrete level
Find the nullspace of the 2N2 × 2N2 matrix

{
Divh(F) = 0
Curlh(F) = 0

⇒ Basis of harmonic vector fields {h1,h2}
Randomized method for rank-deficient linear systems

[J. Sifuentes, Z. Gimbutas, L. Greengard (2015)]

(Ah + ~r~sT )~y = Ah~q ⇒ Ah(~y − ~q) = 0



The Laplace-Beltrami equation

∆Γφ = b (∗)

At the continuous level

MΓ = {f : Γ→ R | 〈f , e〉Γ = 0} with e(u, v) = 1

(∗) invertible fromMΓ toMΓ

⇒ ∀b ∈ MΓ, ∃!φ ∈ MΓ such that

∆Γφ+ 〈e, φ〉Γ e = b

At the discrete level
Solve (

∆Γ,h + ~c ~c T
)
~φ = ~b

Preconditioner :
(
∆I ,h +~1~1

T
)−1



Application to plasma physics

Stellarator

Knotatron
Knotatron
Knotatron
Knotatron

Knotatron
Knotatron
Knotatron
Knotatron

Knotatron

Courtesy of S.

Hudson



3D parametrization of a Stellarator geometry

Garabedian coordinates
x(s, u, v) =





cos v
(
r0(v) + R(s, u, v) (

∑
∆m,n cos((1 −m)u + nv)− r0(v))

)
,

sin v
(
r0(v) + R(s, u, v) (

∑
∆m,n cos((1 −m)u + nv)− r0(v))

)
,

z0(v) + R(s, u, v) (
∑

∆m,n sin((1−m)u + nv)− z0(v)) .

◮ Poloidal and toroidal angles u ∈ [0, 2π], v ∈ [0, 2π]
Radius-like parameter s ∈ [0, 1]

◮ Magnetic axis (r0(v), z0(v))

◮ Outer surface
(
∑

∆m,n cos((1−m)u + nv),
∑

∆m,n sin((1 −m)u + nv))

◮ Stretching function R(s, u, v)

◮ Nested genus 1 surfaces for increasing values of s



3D parametrization of a Knotatron geometry

(p, q)-knot coordinates

Parametrized knot curve defined by XL(v) as





xL(v) = cos(pv)(R0 + r1 cos(qv)),
yL(v) = sin(pv)(R0 + r1 cos(qv)),
zL(v) = r1 sin(qv).

◮ Tangent unit tangent to the curve T(v)

◮ Normal unit vector
N(v) = (cos(pv) cos(qv), sin(pv) cos(qv), sin(qv))

◮ Binormal unit vector B(v) = T(v)×N(v)

The desired surface is then defined as

X(s, u, v) = XL(v) +
s

a
cos u·N(v) +

s

b
sin u·B(v).



The code
Input

◮ Geometry x

◮ Component of the metric tensor Gij

◮ and their first and second order derivatives

Operators

◮ From point values to point values

◮ FFT based

Numerical solve

◮ O(N2 logN) for N2 points to represent the surface

◮ Iterative methods Bicg stab

Implementation

◮ Fortran

Remarks

◮ Standard geometry input
Independent from the rest of the code

◮ Global surface parametrization



A Stellarator geometry

Parameter values

◮ r0(v) = 4.8 + 0.1 cos v

◮ z0(v) = 0.1 sin v

◮ s = 0.8

◮ R(s, u, v) =
s(1 + 0.01(1 − s) cos u sin v)

m\n -1 0 1

-1 0.17 0.11 0

0 0 1 0.07

1 0 4.5 0

2 0 -0.25 - 0.45



The Laplace-Beltrami equation on our Stellarator geometry

Parameter values

◮ ψ(u, v) = ecos u+sin v + ecos(κ(u−v))

◮ ψ0 = ψ − 〈ψ,e〉Γ
〈e,e〉Γ

e

◮ b = ∆Γψ0

◮ κ = 12

Numerical results
Error ‖φh − ψ0‖2,Γ

N Iterations Time Error

47 99 0.23E+01 0.12E+02
95 125 0.97E+01 0.36E-02
191 136 0.91E+02 0.11E-06
383 121 0.54E+03 0.42E-12
767 114 0.86E+03 0.44E-12



A (2, 3)-knot geometry

Parameters :

◮ R0 = 10 & r1 = 1

◮ p = 2 & q = 3

◮ a = b = 2

◮ s = 0.9



Harmonic vector fields on our (2, 3)-knot surface

Numerical results
Error ‖Divh ~ψ‖2,Γ and ‖Curlh ~ψ‖2,Γ

N Iterations Time Div error Curl error

47 676 0.23E+02 0.49E-09 0.49E-09
95 532 0.53E+02 0.63E-10 0.17E-09
191 607 0.70E+03 0.56E-10 0.11E-09
383 658 0.50E+04 0.10E-08 0.13E-08
767 686 0.69E+04 0.12E-09 0.38E-09



A (3, 4)-knot geometry

Parameters :

◮ R0 = 10 & r1 = 1

◮ p = 3 & q = 4

◮ a = b = 2

◮ s = 0.9



Hodge decomposition on our (3, 4)-knot surface

Parameter values

◮ j(x) = ∇ (sin ıκk · x) + n×∇ (sin ıκk · x)
◮ κ = 10

◮ k = (0, 0, 1)

◮ jT = j− (j · n)n

Numerical results
Error ‖jT −∇Γα− n×∇Γβ − jH‖2

N Iterations Time Error

47 867 0.14E+03 0.49E-02
95 839 0.70E+03 0.94E-02
191 967 0.56E+04 0.10E-04
383 1056 0.37E+05 0.11E-06
767 1181 0.93E+05 0.11E-08



Future work
Electromagnetic scattering : Gen. Debye sources [Epstein et al. ’10,’13]

E = ıkA−∇φ−∇× Am

B = ∇×A+ ıkAm −∇φm
◮ Potentials and Antipotentials Symmetry, Decouples at zero frequency

◮ Combined Source Integral Equation method

A(m)(x) =

∫

Γ
gk(x−y)j(m)(y)dAy & φ(m)(x) =

∫

Γ
gk(x−y)q(m)(y)dAy

◮ Laplace-Beltrami equations for surface unknowns

Taylor states or Beltrami fields [O’neil Cerfon ’16]

∇×B = λB

Anisotropic Maxwell equations
◮ Volume integral representation



Thank you for your attention

Collaborators : B. Després, L. Greengard, P. Monk.




